Small molecule activator of the human epithelial sodium channel.
نویسندگان
چکیده
The epithelial sodium channel (ENaC), a heterotrimeric complex composed of alpha, beta, and gamma subunits, belongs to the ENaC/degenerin family of ion channels and forms the principal route for apical Na(+) entry in many reabsorbing epithelia. Although high affinity ENaC blockers, including amiloride and derivatives, have been described, potent and specific small molecule ENaC activators have not been reported. Here we describe compound S3969 that fully and reversibly activates human ENaC (hENaC) in an amiloride-sensitive and dose-dependent manner in heterologous cells. Mechanistically, S3969 increases hENaC open probability through interactions requiring the extracellular domain of the beta subunit. hENaC activation by S3969 did not require cleavage by the furin protease, indicating that nonproteolyzed channels can be opened. Function of alphabetaG37Sgamma hENaC, a channel defective in gating that leads to the salt-wasting disease pseudohypoaldosteronism type I, was rescued by S3969. Small molecule activation of hENaC may find application in alleviating human disease, including pseudohypoaldosteronism type I, hypotension, and neonatal respiratory distress syndrome, when improved Na(+) flux across epithelial membranes is clinically desirable.
منابع مشابه
Human alveolar epithelial type II cells in primary culture
Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملAMP-Activated Protein Kinase Attenuates High Salt-Induced Activation of Epithelial Sodium Channels (ENaC) in Human Umbilical Vein Endothelial Cells
Recent studies suggest that the epithelial sodium channel (ENaC) is expressed in the endothelial cells. To test whether high salt affects the NO production via regulation of endothelial ENaC, human umbilical vein endothelial cells (HUVECs) were incubated in solutions containing either normal or high sodium (additional 20 mM NaCl). Our data showed that high sodium treatment significantly increas...
متن کاملPlasmin in nephrotic urine activates the epithelial sodium channel.
Proteinuria and increased renal reabsorption of NaCl characterize the nephrotic syndrome. Here, we show that protein-rich urine from nephrotic rats and from patients with nephrotic syndrome activate the epithelial sodium channel (ENaC) in cultured M-1 mouse collecting duct cells and in Xenopus laevis oocytes heterologously expressing ENaC. The activation depended on urinary serine protease acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 283 18 شماره
صفحات -
تاریخ انتشار 2008